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A differential equation system describing the temporal evolution of excited substates and fluorescence
emission were tested using a DOPRI algorithm. The numerical solutions show that there is significant
difference in the measurable parameters according to the type of connectivity among the excited
substates. In the globally connected case, the fluorescence emission exhibits a double exponential
behavior, and the first moment of the emitted spectrum decays with stretched exponential characterized
by β < 1. In the diffusive case the fluorescence emission cannot be always fitted with double
exponential, and the first moment of the emitted spectrum may decay with stretched exponential
characterized by β > 1. Details of modeling and the possibilities of drawing conclusions are also
presented.
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INTRODUCTION

Fluorescence is a powerful tool for collecting
information from molecular level [1,2]. The decay of
fluorescence emission is basically determined by the
excited state processes. Several types of these processes
are known, e.g., vibrational relaxation [3], dielectric
relaxation, excited state reactions and many more. Their
time-scale lasts from femtoseconds to nanoseconds
and many times even towards the longer ranges. It is
common in these processes, that their effects appear in the
fluorescence decays and time-resolved spectra, generally
resulting in nonexponential decays of fluorescence and a
red- (or blue-) shift in the time-resolved spectra [4].

In this paper, a simple model is presented, in which
simultaneous temporal evolution of excited states and
fluorescence decays are followed. Different results are
obtained depending on the initial conditions. This work
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was initiated by the observation of common fluorescence
behaviors of different excited state relaxations.

In complex systems, such as proteins, poly-
mers,biopolymers, colloid systems (emulsions and
microemulsions), biological cells, porous materials,
liquid crystals etc. the interconversion between a large
number of states leads to complicated decays both in
fluorescence emission and in the calculated first moment
(also called center-of-gravity) of the spectrum [5,6].
There are several studies on the physical background
of these decays. Protein conformational changes, and
relaxations to thermal equilibrium in metallic nanoclus-
ters also follow a stretched exponential law [7–10]. It
was recently demonstrated that the inhomogeneity of
coupling to the solvent of the bulk and surface atoms
suffices to generate a spectrum of decay rates and a
complex, nonexponential relaxation dynamics [11].

Among the huge number of articles modeling fast
processes it is worth to note, that in numerical solutions
the careful data handling is very important, sometimes an
excellent-looking fit could catch the mind and may result
in bad conclusions. Even a highly nonlinear experimental
probe such as resonance energy transfer could exhibit a
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decay that deviates from a simple exponential by less than
0.5% [8].

TERMS AND EXPRESSIONS

In our model, the excited state process will proceed
as subsequent steps between excited substates separated
by the same energy difference. The system will develop
as a whole, jumping from substates to substates. At ev-
ery time, the system can be described by the population
distribution of excited substates. In the analysis of relax-
ation phenomena, it is a reasonable assumption that the
rate of leaving a substate depends on the energy difference
between the substates occurring in the single steps.

The results of calculations will depend on the type of
connectivity between substates. Choosing different type
of connectivity, the model allows to handle cases having
different physical background [12,13]. In the “globally
connected” case (GCC), every substate is accessible from
every other, regardless of the energy difference between
them. This global connection may happen via a higher
transition state or directly, without any intermediate steps.
The former can be observed in complex systems, e.g. pro-
teins, where this higher energy transition state corresponds
to a less compact form of the macromolecule and the he-
lices are free to reposition. The latter happens e.g., in vi-
brational or dielectric relaxation of smaller fluorophores.
In the “diffusive” case (DC), only transitions between ini-
tial and final substates that are neighbors in energy are
allowed, i.e., Ej = Ei ± δE. In this case, molecules move
diffusively from the initial to the final distribution of pop-
ulation of excited substates.

Y(n, t) denotes the population of nth substate of the
excited state at time t. The first substate has the lowest en-
ergy, and the substates are separated by the same energy
difference: Ei ± 1 = Ei ± δE. In the calculations we use
N = 30 substates describing their temporal evolution
in 501 time points. The fluorescence emission may oc-
cur from every substate. The spectral shape of emission
from the nth substate at the emission frequency of ν is
EM(n, ν). For practical considerations, the frequency steps
between the points of the spectrum is choosen to be equal
to the frequency difference of substates, i.e., δν = δE/h,
where h is the Planck constant. In the spectral space 200
frequency points are used. The shape of the spectrum emit-
ted from a higher or lower energy substate is the same,
the difference is, that it is shifted towards the higher en-
ergies in case of a higher energy excited substate. Ev-
ery single substate emits its own spectrum. The temporal
evolution of nth substate’s emission can be described as
Y(n, t) EM(n, ν). The fluorescence decay at frequency

ν and at time t will be a sum of emissions of different
substates:

I (ν, t) =
N∑

n=1

Y (n, t)EM(n, ν). (1)

The first moment of the excited substates

n(t) =

N∑
n=1

Y (n, t)n

N∑
n=1

Y (n, t)

(2)

and the first moment (center-of-gravity) of fluorescence
emission

ν(t) =
∑
ν

I (ν, t)ν
∑
ν

I (ν, t)
=

∑
ν

[
N∑

n=1
Y (n, t)EM(n, ν)

]
ν

∑
ν

[
N∑

n=1
Y (n, t)EM(n, ν)

] (3)

will be used in the analysis. The width of the observed
spectrum �ν is calculated as

[�ν(t)]2 =
∫

I (ν, t)(ν − ν)2dν∫
I (ν, t)dν

=
∫

I (ν, t)ν2 dν∫
I (ν, t)dν

−
[∫

I (ν, t)ν dν∫
I (ν, t)dν

]2

. (4)

The master equation for the coupled differential
equation system describing the evolution of excited sub-
states is

dY (n, t)

dt
=

N∑

m=1

kmnY (m, t) −
N∑

m=1

knmY (n, t)

−(
kr
n + knr

n

)
Y (n, t), (5)

where kmn is the rate at which the molecules of mth sub-
state converts to the nth substate, and expressed as fol-
lows:

kmn(T ) = k0g(En)δE exp[−(En − Em)/RT ], (6)

where g(En) is the density of states at En, k0 is a constant
and R = 8.31 J/mol K. kr

n and knr
n are the rates of ra-

diative and nonradiative processes leading to the ground
state. For simplicity, we assume that ginitial(E) and gfinal(E)
are identical Gaussian functions with the same standard
deviation. It is a practical assumption, that the substates
are separated by the same energy difference, this simplifies
the differential equation system. In other words, we work
with fixed separation between substates and uses g(E),
instead of using varying separation between substates.
After excitation at t = 0, the equilibration of the system
from the initial distribution of excited substates into the
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final distribution is described by Y(n, t). kii = 0 for i =
1,. . ., N.

To solve (5), it is needed to give the initial population
of excited substates Y(n, 0), the kmn, kr

n, and knr
n rate con-

stants, the g(En) density of states and to set the possible
ways of transitions between substates (GCC or DC).

The shape of emitted spectra could be chosen as a
log-normal or a Gaussian function. The log-normal shape
is characteristic for organic fluorophores such as quinine
bisulphate, tryptophane, tyrosine and many others. De-
tailed description of these kind of spectra and the mean-
ing of necessary parameters can be found in [14]. The
Gaussian shape is also widespread among emitters.

DOPRI. The coupled differential equation system
was numerically solved using the DOPRI algorithm,
which belongs to the family of embedded Runge–Kutta
methods. It was introduced by Dormand and Prince [15]
and is very powerful and robust, ensuring short cal-
culation times. The results were tested using different
step lengths to be sure there are no artifacts within the
results.

RESULTS AND DISCUSSION

The results of numerical evaluation will be shown
parallel in the followings both in globally connected and
diffusive cases, for the sake of comparability.

Temporal Evolution of Excited States

Figure 1 shows the temporal evolution of excited
substates displaying their absolute values.

The substates converts towards the lower energies
step by step. During the excited state relaxation every

substate emits its own spectrum, which means, that at ev-
ery time several substates are emitting. These elementary
spectra have the same shape, but they are energetically
shifted towards each other. The highest energy substate
emits the bluest spectrum, the lower substates emit spec-
tra shifted towards the lower energies, i.e., they are red-
shifted.

Fluorescence Decay Curves

When observing, we measure fluorescence intensity
decay curves at fixed wavelegths, where the different parts
of the elementary spectra originating from the different
substates are added to each other. This is, what we can
measure. The fluorescence intensity decays (Fig. 2) show
the well-known shapes observable when the fluorescence
spectrum is shifting in time.

In GCC, the most surprising fact is that these fluo-
rescence decay curves can be fitted within not more than
0.1% error with double exponentials, in Fig. 2A–C the
two lines are practically within the drawing linewidth.
Moreover, the decay times τ 1 and τ 2 are constant along
almost the whole spectrum, except at very low intensity
ends of the spectrum. This is true for varying parameters
of the elementary spectra in wide ranges. In case of ele-
mentary emission spectra of Gaussian shape even the low
intensity parts of the total emission spectrum can be fitted
with the same decay times (not shown in Fig. 2). On the
blue side of the emission (Fig. 2A) both preexponentials
are positive, around the middle of the spectrum (Fig. 2B)
and on the red side (Fig. 2C) the shorter decay compo-
nent has negative preexponential. The fitting parameters
of the fluorescence decays of Fig. 2A–F can be seen in
the inserts.
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Fig. 1. Temporal evolution of excited states. (A) absolute intensities (GCC), (B) absolute intensities
(DC).
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In DC, double exponential can be found on the blue
side and in the middle of the spectrum, but the shape of
the decay is entirely different on the red side, where the
fitting function varies according to the initial parameters,
thus it cannot be given in a general formula for the decay
function. A poor fit with double exponential can be seen
in Fig. 2F.

General findings for both GCC and DC are that in-
crease in the kmn values results in faster transfer among
substates, which yields a higher value for preexponential
of the faster intensity-decay component. Similarly, de-
crease in the kmn values results in slower transfer among
substates, which yields a lower value for preexponential
of the faster intensity-decay component. A less dramatic
change in the preexponential of the slower intensity-decay
component also appears.

First Moment of Excited Substates
and Fluorescence Emission

Now, let us focus on temporal evolution of excited
substates and total fluorescence described by the time
dependence of their first moments n(t) (Fig. 3A and B)
and ν(t) (Fig. 4A and B), respectively.

Both of the first moment of excited substates and
total fluorescence decay with the same function. This is
obvious and is expected from the model we used [see

Eqs. (2) and (3)]. When calculating the first moment of
excited substates, these substates are weighted by their
own populations. In case of the first moment of fluores-
cence emission, the picture is the same, because all of the
excited substates emit the elementary spectra of the same
shape.

The decay of first moments was found to be a
stretched exponential:

n(t) = n(∞) + cn exp[−(t/τ )β], (7)

and

ν(t) = ν(∞) + cν exp[−(t/τ )β], (8)

where n(∞) and ν(∞) are the first moments of excited
states and the fluorescence emission, respectively, after
infinitely long (practically: very long) time; cn and cν are
constants. This stretched relaxation is an average property
of the ensemble.

In GCC, the molecules move towards the lower en-
ergies through jumps random in time and magnitude. The
parameters of curves at (Figs. 3A and 4A) are τ = 51.33
and β = 0.946. Of course, these numbers varies according
to the initial parameter values, but it seems general, that
in GCC β < 1. Usually, most of the systems characterized
by stretched exponential behavior show β < 1.

In DC, the molecules relax in a relatively restricted
way, thus the population moves as a group through the
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Fig. 2. Fluorescence decay curves. (A)–(C): GCC, (D)–(F): DC. The curves were produced using log-normal shape elementary emission
spectra. Continuous line: decay originating from the model run; dashed line: double exponential fit for the decay. Insert: fitting parameters
(preexponentials and decay times).
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Fig. 3. Time dependence of the first moment of excited states. (A) GCC, (B) DC.

excited substates [see the contour plot in Fig. 1B]. The
stretched exponential parameters of curves at Figs. 3B
and 4B are τ = 73.03 and β = 1.109. In DC, both β < 1
and β > 1 may occur depending on the circumstances. In
the practice, β > 1 is relatively more rare; nevertheless, it
also occurs [16].

Spectral Width

The last parameter we use now for describing the
relaxation is the spectral width of fluorescence emission
which has a maximum while the system moves from the
initial towards the final distribution of excited substates.

Figure 5 shows the temporal evolution of the spectral
width. Both in GCC and DC the spectral width increases
first, then, after reaching a maximum value, decreases
monotonically. In GCC, it can be fitted very well with dou-
ble exponential at the wide ranges of initial parameters.
In DC, the curve cannot be fitted so simply, it is far from
a double exponential shape. In GCC the spectral width
becomes wider at its maximum value than in DC. It is not
surprising, because in GCC every substate is connected to

every other substate, but in DC only the neighboring sub-
states are connected; thus, the excited substate population
moves as a narrower group through the possible substates.

CONCLUSION

Evolution of molecular excited substates were mod-
eled with coupled differential equation system. The model
allows to test different cases according to the type of con-
nectivity between the substates.

In GCC, the fluorescence emission decays are pre-
dicted to be double exponentials having constant τ 1 and
τ 2 decay times through the whole emission range. This
reminds of a more simple system, namely the reversible
excited two-state reactions, see, e.g., chapter 12 in [1],
where also two constant decay times can be measured
along the whole spectrum, but the preexponentials varies
wavelength by wavelength. More or less, the system in
GCC is very similar to that one. The difference is, that
in our model there is an initial and a final distribution of
excited substates all of them connected to each other, and
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Fig. 4. Time dependence of the first moment of fluorescence emission intensity. (A) GCC, (B) DC.
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Fig. 5. Spectral width of fluorescence emission. (A) GCC, (B) DC.

not only two discrete excited states—belonging to excited
monomer and dimer forms in that model.

Other example for application of our model is solva-
tion relaxation, which can be described both by two-state
model or by continuous model, too. The analysis of time-
dependent spectral width (TDSW) helps us to distinquish
between them. Examples for TDSW can be found in sev-
eral articles, see [1,17,18]. A TDSW gives information
about the underlying processes. If it practically does not
change under the relaxation the continuous model fits
well. If TDSW first increases, then decreases, the two-
state—or it is better to say quasi two-state—model of re-
laxation is applicable. In our model, in GCC, the TDSW
behaves as it is expected in two-state model of solvation
relaxation.

The first moments of excited substates and of the
fluorescence emission relax with an extended time course
that can be fitted very well through a several order mag-
nitude wide time range with a stretched exponential of
β < 1. Nevertheless, let us not forget that the stretched
exponential is only an empirical function, which is use-
ful as an approximation of nonexponential data. At the
time very near to zero, it gives an unrealisticly fast rate
(it can be corrected using limiting rate modification of
the formula). Similarly, after very long time, when only
the slowest process dominates, several times the simple
monoexponential could give a better fit.

In DC, the fluorescence decays on the blue side of
the spectrum still are practically double exponentials, but
on the red side they are not. The first moments show
stretched exponential decay, but in many cases with β >

1. These features results from the fact, that in DC only
the neighboring substates are connected, i.e., the jumps
between the substates are very restricted.

It should be noted, that in our model system there
is yet no barrier, e.g., dielectric relaxation (or solvation

relaxation) and vibrational relaxation belong to this kind
of systems. In a protein, the interconversion between vari-
ous structures depends on the energy barrier. This situation
can be modeled with our technique using the transition
state mentioned in the section “Terms and Expressions.”
In this case, the sequence of the steps is as follows: starting
substate—transition state—ending substate. Presently, we
are working on calculations using this transition state in
the model.

The simple model presented in this paper gives wide
possibilities for fenomenological handling of the observed
phenomena. It helps well to draw significant conclusions
from the measured fluorescence decays even if not know-
ing all the details of the underlying physical and chemical
processes. The further improvement and tests with results
of biophysical measurements are on the way in our group.
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